Those are notes from a talk given by Neil Ferguson about how to take benefit of very large amount of memory to improve the performance of server-side applications.
Background
With the increases in the amount of managed data of any enterprise or web application, there is a continuous need for storing more and more of data while providing a real-time access to it. The performance of such applications can be improved by making data available directly from memory and efficiently use the available huge amount of memory that may reach many many terabytes in a near future.
In fact, memory prices is continuously decreasing while the capacity increases to the point where terabytes of RAM will be available for servers in a near future. The cost of a 1MB of RAM was about $0.01 in Jan 2009 while it is $0.005 in 2013, source Memory Prices (1957-2013). In fact, we could by a workstation with 512GB of RAM for $2299, and new Intell processors (e.g. Xeon) allow up to 144GB of RAM and more (around terabytes) for new generation processors dedicated to server-class machines. However, it still not practical to do anything with such an amount of RAM. Why?
Garbage Collection Limitations
In any Garbage-collected environment (like JVMs), if the object allocation rates overtake the rates at which the GC collect these objects then long GC pauses (time during which the JVM stops applications to just run the garbage collector) may become very frequent. One way to avoid such problem is to leave a plenty of free space in the heap. The thing is when you leave a third of 3GB it's not really a big deal compared to the case when leaving the third of 300GB even if it's the same ratio betwee free space and live data.
The bad news, is that even with large free space there may be some situations where GC pauses are too long typically for memory defragmentation.
You can improve an application performance with -XX:+ExplicitGCInvokesConcurrent as a workaround to avoid long pausses when System.gc() or Runtime.getRuntime().gc() are explicitly called (e.g. Direct ByteBuffer allocation).
Off-Heap storage
To overcome some of these limitations in JVMs or in Garbage-collected environment, allocation of memory off-heap can be a solution. This can be done in different ways:
1. Direct ByteBuffers
The NIO api allows the allocation of off-heap memory (i.e. not part of the process heap and not subject to GC) for storing long-lived data via ByteBuffer.allocateDirect(int capacity). Capacity is limited to what was specified with the JVM option -XX:MaxDirectMemorySize.
The allocation through ByteByffer has implications for GC (long pauses) when it is freed not fast enough and makes it not suitable for short-lived objects, i.e. allocating and freeing a lot of memory frequently.
2. sun.misc.Unsafe
Direct ByteByffer itself relies on sun.misc.Unsafe.allocateMemory to allocate a big block of memory off-heap and on sun.misc.Unsafe.freeMemory to explicitly free it.
Here is a very sample implementation of a wrapper class based on the Unsafe API for managing off-heap memory:
Note that the implementation of the OffHeapObject is very basic, there is a performance impact for using off-heap memory. In fact, everything needs to be serialized on writes to off-heap and de-serialized on read from off-heap memory and these operations has some overhead and reduced throughput compared to on-heap storage.
Furthermore, not every object can be stored in the off-heap memory for instance the OffHeapObject that keep a reference to a block of memory in the off-heap is actually stored in the heap.
The performance of this implementation may be enhanced with techniques like data alignment.
Some existing caches based on off-heap storage
continue from 28:39
Resources
Background
With the increases in the amount of managed data of any enterprise or web application, there is a continuous need for storing more and more of data while providing a real-time access to it. The performance of such applications can be improved by making data available directly from memory and efficiently use the available huge amount of memory that may reach many many terabytes in a near future.
In fact, memory prices is continuously decreasing while the capacity increases to the point where terabytes of RAM will be available for servers in a near future. The cost of a 1MB of RAM was about $0.01 in Jan 2009 while it is $0.005 in 2013, source Memory Prices (1957-2013). In fact, we could by a workstation with 512GB of RAM for $2299, and new Intell processors (e.g. Xeon) allow up to 144GB of RAM and more (around terabytes) for new generation processors dedicated to server-class machines. However, it still not practical to do anything with such an amount of RAM. Why?
Garbage Collection Limitations
In any Garbage-collected environment (like JVMs), if the object allocation rates overtake the rates at which the GC collect these objects then long GC pauses (time during which the JVM stops applications to just run the garbage collector) may become very frequent. One way to avoid such problem is to leave a plenty of free space in the heap. The thing is when you leave a third of 3GB it's not really a big deal compared to the case when leaving the third of 300GB even if it's the same ratio betwee free space and live data.
The bad news, is that even with large free space there may be some situations where GC pauses are too long typically for memory defragmentation.
You can improve an application performance with -XX:+ExplicitGCInvokesConcurrent as a workaround to avoid long pausses when System.gc() or Runtime.getRuntime().gc() are explicitly called (e.g. Direct ByteBuffer allocation).
Off-Heap storage
To overcome some of these limitations in JVMs or in Garbage-collected environment, allocation of memory off-heap can be a solution. This can be done in different ways:
1. Direct ByteBuffers
The NIO api allows the allocation of off-heap memory (i.e. not part of the process heap and not subject to GC) for storing long-lived data via ByteBuffer.allocateDirect(int capacity). Capacity is limited to what was specified with the JVM option -XX:MaxDirectMemorySize.
The allocation through ByteByffer has implications for GC (long pauses) when it is freed not fast enough and makes it not suitable for short-lived objects, i.e. allocating and freeing a lot of memory frequently.
2. sun.misc.Unsafe
Direct ByteByffer itself relies on sun.misc.Unsafe.allocateMemory to allocate a big block of memory off-heap and on sun.misc.Unsafe.freeMemory to explicitly free it.
Here is a very sample implementation of a wrapper class based on the Unsafe API for managing off-heap memory:
public class OffHeapObject { // fields private static Unsafe UNSAFE; static { try { // get instance using reflection Field field = sun.misc.Unsafe.class.getDeclaredField("theUnsafe"); field.setAccessible(true); UNSAFE = (sun.misc.Unsafe) field.get(null); }catch(Exception e){ throw new IllegalStateException("Could not access theUnsafe instance field"); } } private static final int INT_SIZE = 4; // base address for the allocated data private long address; // constructor public OffHeapObject(T heapObject) { // serialize data byte[] data = serialize(heapObject); // allocate off-heap memory address = UNSAFE.allocateMemory(INT_SIZE + data.length); // save the data size in first bytes UNSAFE.putInt(address, data.length); // Write data byte by byte to the allocated memory for(int i=0; i < data.length; i++) { UNSAFE.putByte(address + INT_SIZE + i, data[i]); } } public T get() { int length = UNSAFE.getInt(address); // read data from the memory byte[] data = new byte[length]; for(int i = 0; i < data.length; i++) { data[i] = UNSAFE.getByte(address + INT_SIZE + i); } // return the deserialized data return deserialize(data); } // free allocate space to avoid memory leaks public void deallocate() { //TODO make sure to not call this more than once UNSAFE.freeMemory(address); } }The OffHeapObject can be used for instance to store values of a cached data, e.g. using Google Guava to store keys-OffHeapObject pairs where the latter wraps data in the off-heap memory. This way GC pauses can be considerably reduced as these objects are just references and do not occupy big block of heap memory. Also, the process size may not grow indefinitely as fragmentation is reduced.
Note that the implementation of the OffHeapObject is very basic, there is a performance impact for using off-heap memory. In fact, everything needs to be serialized on writes to off-heap and de-serialized on read from off-heap memory and these operations has some overhead and reduced throughput compared to on-heap storage.
Furthermore, not every object can be stored in the off-heap memory for instance the OffHeapObject that keep a reference to a block of memory in the off-heap is actually stored in the heap.
The performance of this implementation may be enhanced with techniques like data alignment.
Some existing caches based on off-heap storage
continue from 28:39
Big RAM: How Java Developers Can Fully Exploit Massive Amounts of RAM
Resources
- Understanding Java Garbage Collection presentation at JUG Victoria Nov/2013 - Azul Systems
- Measuring GC pauses with jHiccup - Azul Systems
- A good documentation of the Unsafe API can be found in this blog post.
- How Garbage Collection works in Java - blog post.
Aucun commentaire:
Enregistrer un commentaire